Re: Frage betreffend Atombombenwirkung (Umkreise)
Geschrieben von STYKER am 09. November 2004 12:51:46:
Als Antwort auf: Re: Frage betreffend Atombombenwirkung (Umkreise) geschrieben von STYKER am 09. November 2004 07:51:29:
Hallo nochmal,
hier nun die umfassende Beschreibung zum Thema "Kernwaffen"
Grüsse
STYKER
Der auffälligste Unterschied zu konventionellen Explosionen besteht in der wesentlich größeren Energiemenge sowie den hohen Temperaturen. Bei Atombombenexplosionen werden Temperaturen bis über 100 Millionen Kelvin erreicht, dagegen haben chemische Explosionen lediglich solche von einigen tausend. Die hohe Temperatur von Atombombenexplosionen ist auch Ursache für die Bildung des charakteristischen, hell leuchtenden Feuerballs. Die Sprengwirkung einer atomaren Explosion wird üblicherweise in Kilotonnen oder Megatonnen TNT-Äquivalent angegeben, die die Explosionsenergie in Relation zum chemischen Sprengstoff TNT setzt.
Die Beschreibung einer Nuklearexplosion anhand ihrer Sprengkraft ist jedoch etwas irreführend, denn anders als konventionelle Explosionen wirkt sich eine Atombombenexplosion neben der starken Druckwelle vor allem durch intensive Wärmestrahlung des Feuerballs (auch sichtbares Licht) sowie durch ionisierende Direktstrahlung und radioaktive Rückstände (Fallout) auf ihre Umgebung aus; insbesondere letztere machen die besondere Gefährlichkeit nuklearer Explosionen aus, da ihre Wirkung nicht auf den Moment der Explosion begrenzt ist, sondern viele Jahre oder sogar Jahrtausende andauern kann. Elektrische und elektronische Anlagen werden zudem durch einen starken nuklearen elektromagnetischen Impuls (NEMP) beeinflusst oder zerstört.
Der physikalische Ablauf sowie die militärisch beabsichtigte Wirkung von Atomexplosionen wurde vor allem in den 1950er Jahren von den USA und der Sowjetunion in zahlreichen Atombombentests untersucht. Die meisten physikalischen Kenntnisse über den Ablauf der Explosionen und ihre Auswirkungen auf die Umgebung stammen aus solchen Versuchen, während die medizinischen, wirtschaftlichen und sozialen Folgen hauptsächlich nach den Atombombenabwürfen durch die USA im August 1945 im Zweiten Weltkrieg über den japanischen Städten Hiroshima und Nagasaki "studiert" wurden. Ein Teil dieser Informationen wurde inzwischen zur Veröffentlichung freigegeben.
Detonationsarten
Üblicherweise spricht man im Zusammenhang atomarer Explosionen auch von Detonationen. Physikalisch ist das jedoch nicht ganz richtig, denn eine Detonation setzt eine Reaktionsfront voraus, die sich mit Überschallgeschwindigkeit durch das Energie freisetzende Medium fortpflanzt. Bei der Kernspaltung gibt es jedoch keine Reaktionsfront, und die Kernfusion im Innern einer Wasserstoffbombe entspricht eher einer Deflagration. Lediglich der chemische Sprengstoff, der das Spaltmaterial zur überkritischen Masse verdichtet, detoniert.
Es mag logisch erscheinen, Atomwaffen direkt im Ziel zu zünden, das heißt als Bodendetonation. Allerdings entwickeln Atomexplosionen ihre größte Zerstörungskraft bei Luftdetonationen, vom taktischen Gesichtspunkt ist eine derartige Detonation deshalb meist günstiger. Boden- und Untergrunddetonationen werden nur in einigen Sonderfällen - zum Beispiel als Bunkerbrecher - eingesetzt.
Luftdetonationen
Als Luftdetonationen werden Explosionen innerhalb der unteren Atmosphärenschichten (unterhalb 30 Kilometer) bezeichnet, bei denen der Feuerball nicht den Erdboden berührt. Die Druckwelle der Detonation breitet sich ähnlich einer Seifenblase aus und wird zunächst im Hypozentrum (Erdoberfläche unter der Bombe, Bodennullpunkt, ground zero, GZ) reflektiert, was eine zweite, infolge des "Fahrwassers" der Primärwelle schnellere Druckwelle verursacht. In einiger Entfernung zum Hypozentrum vereinigen sich beide zu einer einzigen sich ringförmig ausbreitenden Druckwelle, die im Vergleich zur Druckwelle einer Bodendetonation zwar in der Nähe des Hypozentrums schwächer, in größerer Entfernung jedoch erheblich zerstörerischer ist. Die militärischen Planungen während des Kalten Krieges sahen Luftdetonationen entweder zur großflächigen Zerstörung ungepanzerter Ziele wie Industriegebiete, Luftstützpunkte oder Truppenverbände, oder zur Ausschaltung von Luftzielen wie Fliegerverbände oder Raketen vor.
Die Detonationshöhe spielt beim Angriff auf ausgedehnte Bodenziele eine entscheidende Rolle. Je höher die Detonation stattfindet, umso schwächer ist die Druckwelle, die den Boden erreicht. Gleichzeitig vergrößert sich die von der Druckwelle betroffene Bodenfläche. Für jede vorgegebene Explosionsstärke, Überdruck der Druckwelle und Entfernung zum Hypozentrum gibt es eine "optimale" Detonationshöhe. Durch die "optimale" Wahl der Höhe kann man auf größtmöglicher Fläche einen größeren Schaden erreichen als bei einer Bodendetonation. Die zerstörte Fläche kann dabei bis zu doppelt so groß sein wie bei einer Bodendetonation.
Bei Luftzielen spielt die reflektierte Welle meist keine Rolle, da die Entfernung zum Ziel wesentlich geringer ist als die Höhe. Dafür muss die Höhenabhängigkeit von Luftdruck und Temperatur stärker berücksichtigt werden. Die Verwendung von atomaren Explosionen zur Ausschaltung von Luftzielen ist heutzutage allerdings weitgehen obsolet und ersetzt durch zielgenaue konventionelle Waffen wie die MIM-104 Patriot-Raketen.
Ein weiterer Effekt einer Luftdetonation ist die größere Wirkung der Wärmestrahlung, da der Auftreffwinkel größer ist und damit die Abschirmung durch vorstehende Gebäude abnimmt.
Bodendetonation
Hauptmerkmale einer Bodendetonation sind die radioaktive Verseuchung großer Landstriche durch Fallout sowie die lokal erheblich stärkere, aber in der Reichweite begrenzte Druckwelle. Der Einsatz erfolgt zur Zerstörung von Bunkeranlagen wie Kommandozentralen, Raketensilos und Staudämmen. Insbesondere aufgeschüttete Staudämme erfordern die Kraterbildung der Bodendetonation. Nähere Informationen zur Entstehung und der Größe der Sprengkrater in Abhängigkeit von der Sprengkraft sind im Artikel Explosionskrater zu finden.
Untergrunddetonationen
Als möglicher Einsatz von nuklearen Explosionen ist die Untergrunddetonation in letzter Zeit wieder stärker in die Diskussion geraten. Dieser Detonationstyp ist besonders geeignet, unterirdische Befehlszentralen und Bunkerkomplexe zu zerstören. Es ist allerdings problematisch, die Bombe unbeschadet tief genug in den Untergrund zu bringen. Bei Atomtests hat die Untergrundexplosion in hinreichender Tiefe gegenüber der Explosion an oder über der Oberfläche den Vorteil, dass die radioaktiven Produkte im Erdinneren verbleiben. Eine langfristige Freisetzung der Spaltprodukte ins Grundwasser oder ins Meer kann nach heutigem Wissensstand jedoch nicht ausgeschlossen werden, insbesondere bei Testexplosionen im porösen Gestein von Atollen, zum Beispiel auf der Pazifikinsel Mururoa.
Unterwasserdetonationen
Die Unterwasserdetonation dient insbesondere der Bekämpfung von U-Booten oder Flottenverbänden. Dazu wurden von allen wichtigen Atommächten unterschiedlichste nukleare Waffen gebaut und getestet. Da sich im Wasser Druckwellen besonders gut ausbreiten können, sind solche Unterwasserexplosionen ebenso wie Untergrundexplosionen nahezu weltweit mit Unterwassermikrofonen nachweisbar. Durch die hohe Dichte des Wassers wird die Energie besonders stark auf Unterwasserziele übertragen und kann Rümpfe von Schiffen und U-Booten eindrücken oder aufreißen. Die Druckwellen breiten sich infolge der hohen Schallgeschwindigkeit im Wasser (etwa 1400 m/s) mehr als fünfmal schneller als in Luft aus und sind, sobald sie die Oberfläche erreichen, dort als sichtbare Störung zu erkennen. Hingegen wird die Druckwelle aufgrund des großen Dichteunterschieds nur in geringem Maße an die Luft übertragen. Lediglich bei geringer Detonationstiefe tritt eine starke Luftdruckwelle auf.
Ähnlich wie bei flachen Untergrundexplosionen werden große Mengen radioaktiven Materials in der unmittelbaren Umgebung des Explosionsortes verteilt, wenngleich die nukleare Direktstrahlung weitgehend absorbiert wird. Doch führen Meeresströmungen nach einiger Zeit zu einer weltweiten Verteilung der Rückstände, während die lokale Verseuchung schnell abnimmt. Neuere Messungen am Bikini-Atoll, wo mehrere Unterwasserexplosionen gezündet wurden, ergaben kaum erhöhte Aktivität am Grund der Lagune.
Höhendetonation
Interkontinentalraketen bewegen sich über einen weiten Teil ihrer Flugbahn im erdnahen Weltraum. Um sie zu zerstören, planten die USA und UdSSR den Einsatz von Abwehrraketen mit Atomsprengkopf, welche in unmittelbarer Nähe der herannahenden Sprengköpfe zünden sollten. Auf die gleiche Weise sollten auch Militärsatelliten zerstört werden. Zumindest die USA führten hierzu mehrere Testexplosionen durch, die teilweise unerwartete Auswirkungen auf die obere Atmosphäre zeigten.
Die Detonation einer kleinen Atombombe in der oberen Stratosphäre mehr als 30 Kilometer über dem Erdboden oder im erdnahen Weltraum hat in Bezug auf die Druckwelle am Boden kaum Auswirkungen. Dennoch kann sie gravierende Auswirkungen auf die zivile und zum Teil auch die militärische Infrastruktur haben, da ein sehr starker elektromagnetischer Impuls (EMP) ausgelöst wird. Dieser kann vor allem elektronische Geräte mit Halbleiterbauelementen wie Computer, Fernseher, Radios oder die elektronische Zündung im Auto irreparabel beschädigen. Schätzungen zufolge könnten etwa vier bis fünf Detonationen ausreichen, um die gesamten USA zu lähmen. Zudem beeinträchtigen bereits schwache EMPs den Funkverkehr. Daher sind die Ausschaltung gegnerischer elektronischer Systeme sowie Störung der Kommunikation weitere mögliche Einsatzziele neben der direkten Bekämpfung von Höhenzielen.
Ablauf einer Explosion
Die Vorgänge bei der Explosion einer Atombombe reichen von der nuklearen Kettenreaktion über die Entstehung von Feuerball und Druckwelle bis hin zur Ausbreitung der Explosionswolke und der radioaktiven Rückstände in der Atmosphäre. Die Zeitskalen der einzelnen Abläufe reichen von Millionstel Sekunden bis zu mehreren Minuten. Grob lässt sich der Explosionsvorgang unterteilen in
Nukleare Kettenreaktion (0–10-6 Sekunden),
Feuerball- und Druckwellenformation (10-6–0,1 Sekunden),
Ausbreitung der Druckwelle, Abkühlen des Feuerballs (0,1–10 Sekunden),
Formierung der Pilzwolke (Sekunden bis Minuten),
Ausbreitung der Wolke, Fallout (Minuten bis Monate).
Die Zeitskalen sind nur ungefähre Anhaltspunkte, da sie stark von der Sprengkraft und der Detonationshöhe abhängen.
Nukleare Energiefreisetzung
Je nach Typ der Atomwaffe variiert die Art und Zeitskala der Energiefreisetzung. Im einfachsten Fall einer Kernspaltungsbombe mit Plutonium oder hochangereichertem Uran setzt unmittelbar nach Überschreiten der kritischen Masse die Kettenreaktion ein. Da die freigesetzten Neutronen mit Geschwindigkeiten um 1,4⋅107 Metern pro Sekunde die meist nur etwa 10 bis 20 Zentimeter große überkritische Spaltmasse innerhalb von 10-8 Sekunden durchqueren, und dabei jeweils mit hinreichend hoher Wahrscheinlichkeit einen weiteren Spaltprozess induzieren, beträgt die mittlere Zeit zwischen zwei Spaltungsgenerationen ebenfalls etwa 10-8 Sekunden. Waffenfähige Spaltmaterialen müssen dabei im Mittel etwa zwei oder mehr Neutronen pro Spaltung freisetzen, um eine ausreichend hohe Wachstumsrate zu gewährleisten. Da jeder gespaltene Uran oder Plutonium-Kern etwa 200 Millionen Elektronenvolt (200 MeV) freisetzt, liefern etwa 2⋅1024 Kernspaltungen eine Energie von 20 Kilotonnen TNT, die Sprengkraft der ersten Atombombe. Bei einem Multiplikationsfaktor von Zwei pro Generation sind – einschließlich des ersten Neutrons – also